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PREFACE

There are a number of options for modulation formats in optical fiber and free-space lasercom systems.
There are a seemingly even greater number of options for receiver architectures. Although most of these

possibilities and combinations have been analyzed in journal publications and textbooks, there does not
seem to be a single place to look for all relevant results concerning these options. Furthermore,
comparisons of the options do not seem to have been methodically tabulated.

In this work, then, we will present, describe, analyze, and compare the theoretical communications
performance metrics of the most common optical modulation formats paired with the basic classes of
receiver types.

Before we start, however, we must warn the reader that this material is not presented in the style of a
standard textbook, with the concepts painstakingly developed and derived from first principles. The style
we have taken throughout is to present the required mathematical formulas and show the performance
curves, but to give only the sketchiest of derivations, if any. Similarly, detailed references are given in
only some cases although the more general textbook references listed may help to fill in many missing
details. It is hoped that the specific topics discussed, the formulas presented, and the several references
given, along with some simple library and web search skills, will lead interested readers to as much extra
development and detail as they find interesting or useful.

Despite what this report is not, though, we hope that, as a compendium, it will find utility for the

communications engineer and analyst. We have also tried to sprinkle throughout comments, observations,
and opinions that are not generally found in technical treatises. We hope these are useful to the reader.

xvii



1. INTRODUCTION

The most common transmission formats used in optical communications systems include on-off keying
(OOK), phase shift keying (PSK), and the so-called orthogonal modulations-pulse position modulation
(PPM), frequency shift keying (FSK), and orthogonal polarization shift keying (POLSK). (Of course,
optical signaling has at least as many other variants as classical radio and electronic signaling, but we will
constrain ourselves in this report to the listed formats, which have been used traditionally.) For each of

these, we will examine several receiver architectures, including preamplified, heterodyne, homodyne.

photon counting, and optimum quantum. We will examine both coherent and incoherent receivers when

applicable. Metrics to be examined include the bit and symbol error rates of uncoded systems and the

channel capacity and computation cutoff rate of coded systems. For these, we will examine both hard-

decision and maximum-likelihood (soft-decision) algorithms.

We will be assuming that the system is noiseless in that only transmitted photons are received and that

additive noise in the receiver can appear only due to imperfect reception mechanisms. Obviously, in a real

system, these assumptions would need to be examined and likely relaxed.

Radio frequency (RF) signals are generally modeled with the viewpoint that they would have been

perfectly measurable, if only the additive noise at the receiver had not corrupted the measurement. On the

other hand, the quantum nature of optical signals-even noiseless signals-means that they are, at their

core, not perfectly measurable. Errors are made because of this quantum measurement inadequacy, not

because of the corruption of any additive noise (unless, of course, noise is also added at the receiver, such

as by an optical amplifier). The best receivers are based on knowledge of this property.

The generic communication system we will be discussing is shown in Figure 1. Bits are presented to the

system by an external data source. We may decide to use error-correction coding to improve power

efficiency. The encoder maps groups of source bits into groups of encoded "channel bits." These encoded

channel bits may be further mapped into "channel symbols," which then direct the operation of the

modulated optical signal generator. (In fact, the bits-to-symbols mapping may have been done at the input

to the encoder or in the encoder itself.)

To increase transmitted power, there may be an optical amplifier. The (lossy) channel is here assumed to

include everything-transmitter optics, beam spreading losses, channel attenuation, and receiver optics-

between this amplifier and the receiver, which then makes measurements of the channel symbols. Finally,

the outputs of this receiver box are fed to a de-mapper and/or decoder, whose outputs are estimates of the

original source data bits and which are sent on to the destination. Modern systems may combine certain of

these functions in various ways, but we will use this block diagram with the understanding that variants

will have obvious analysis extensions.



r -- ------ Channel Modulated
Error ~I bits to r----- -- empe

Scorrection channel optical Power Symbol De-mapper I
S b signal amplifier receiver and/odrencoder i symbols generator decoder

L- I mapper I - - - - -

Source I Channel Destination

Figure 1. The optical comnunication system.

The structure of this report is as follows:

Preliminaries

* System Options and Requirements
* The Classical Receivers

Information Theory of Classical Systems
* Notation and Basic Error Probability Formulas for Classical Systems

* Classical Channel Capacity

* Classical Computation Cutoff Rate

Information Theory of Quantum Systems

Modulation Formats
* Generalized On-Off Keying
• Orthogonal Modulations-PPM and FSK
* M-ary Phase Shift Keying (MPSK)

Comparisons

For those readers interested only in the performance results, the Preliminaries sections can be skipped.
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2. PRELIMINARIES

2.1 COMMUNICATION SYSTEMS OPTIONS AND REQUIREMENTS

Possibilities for signal generation depend upon the existence of technologies that can vary, at the desired
symbol rate, the parameter of interest and then can send the constructed signal, at adequately high power,
to the receiver. Thus, the selection of formats will be directed by the availability of, for example, direct
laser modulation of amplitude, wavelength, or phase; or of external modulation of amplitude,
polarization, or phase. Further, the availability of peak- vs average-limited power generation will favor
certain choices.

Once a transmission format has been selected, there exists a hierarchy of receiver structures that can be
employed, depending on what is easily known or measurable at the receiver. Selection here will depend
upon knowledge of signal frequency (or equivalently wavelength), phase, amplitude, spatial properties,
waveform shape, timing, and polarization. This selection is also driven by available receiver technologies
with adequate bandwidths.

Each pairing of a modulation format with a receiver structure has its own set of analytical tools and
derived performance. To walk through this tree of possibilities, in this work we will first examine the
analysis mathematics applicable to the various receivers and then apply them to each major family of
modulations.

Therefore, let us first survey the main receiver types.

2.2 THE CLASSICAL RECEIVERS

Noiseless Photon Counter

In this theoretical device, we make the classical assumption of photons being detected with Poisson
statistics at a rate proportional to the instantaneous signal power.

NA N (I)
Pp, ,(k IN) = ee N k=0, 1,2.k!

Here, Pli, is the probability of counting k photons in a measurement period where N is the average
number of photons (possibly fractional) that could have been expected in such a period. The perfect
photon counter has a detection efficiency of I. (We also assume in this work that there are no noise
photons in such a system. Since performance in noise can be shown to depend on two parameters-the

signal photons per symbol and the noise photons per symbol-and not just their ratio, as in RF systems,
we will not cover this case in this work. Technologies presented here, however, have direct applicability

to the noisy case, with noises also modeled as photons counted with Poisson statistics.) Thus, at an
average arrival rate of X photons per second over a time of T seconds, we see that N = UT. We can also

3



see that there is always a finite probability of not detecting a photon (i.e., counting 0 photons) when a
signal is actually present, and this probability is given by

P,,,,, (01 N) = e N (2)

(Note that for a signal with a received power such that there is, on average, one photon to be detected per
period of time, if we count photons over many such periods of time, we will count zero in I/e or 37r/c of'
them.) In modulations based on the existence or non-existence of pulses, then, errors with such a receiver
will be made only if pulses were "supposed to" exist but were not detected. (This fact is sometimes called
the quantum limit, but we will see that there are better uses for this term.)

Tnre noiseless photon-counting devices with high detection efficiency and wide bandwidth are difficult to
build. Technology for them is rapidly growing, however.

Heterodyne

The architecture for a (balanced) heterodyne front end is shown in Figure 2.

signal 3-dB Bandpass Coherent oratl splitter matched noncoherent
a filter(s) detector

Strong local - Frequency -------
oscillator at X+A÷ control

Figure 2. Heterodne receiver (balanced cminhguration).

At the receiver, a strong local oscillator (LO) laser beam is combined, in a beam-splitter, with the very
small incoming optical signal. The LO is constant amplitude (or constant wave, CW) and its wavelength
is selected (or controlled) to be near but not equal to the wavelength of the received signal. (Note:
polarization must also be matched in classical heterodyne receivers, but there are variants that do not
require polarization [ 14].) The combined signal is detected at (a differenced pair of balanced) square-law
devices whose electrical output can be shown to be a sum of the "beat signal" between the two signals
plus the so-called shot noise induced by the photons in the small, received signal. By the selection of the
wavelength offset, the electrical beat signal comes out at a desired intermediate frequency. With proper
choice of this frequency, standard RF radio receiver techniques, such as electrical filtering, etc., can be
employed in further processing. Thus, this heterodyne front end can be followed by a simple square-law
detector, by frequency-selective elements, or by coherent receivers, all in the electrical domain.

4



When the local oscillator power is very large compared to the received signal power, the output electrical
signal is well modeled as an undistorted but amplified copy of the input optical signal, now embedded in
white Gaussian noise and with its carrier frequency now set at the intermediate frequency. Since phase
(relative to the LO) has been preserved, either coherent or noncoherent techniques can be used in further
processing and in the detection process.

It is well known that the optimum processing to perform in additive white Gaussian noise is to apply a so-
called matched filter, matched to the signal, with the output of the filter then sampled at the point of
largest signal-to-noise ratio (SNR). (See, for example, [17].)

This sampled output has an SNR equal to (as described in RF systems) EJNo (signal symbol energy
divided by the noise spectral density). It can be shown that for our heterodyne receiver, this value is equal
to the input photons-per-symbol! With this equivalence, we see that all discussions and analyses of
classical receivers in this work are applicable to RF systems.

The probability density function of the sampled output signal, properly normalized, at the output of a
coherent receiver is Gaussian

f4(x G NQ ) (3)

where

1 x(4)(x) - exp(---)
72,T 2

and its cumulative distribution function is

(5)
0(Do) -f(; ( x)dx

- lerfc(y/IV2)

2

There are many algorithms for efficiently calculating this well-known function.
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A constraint on heterodyne systems is that the wide bandwidth electrical lasercom signal must appear on a
carrier at an intermediate frequency, which means that the detection and the electrical processing must be
done with a total bandwidth likely 1.5-3 times as wide as the lasercom signal itself. This is illustrated in

Figure 3.

Receiver BW
4

Signal BW

SI I
-fo 0 fo

Figure 3. Heterodyne signal structure.

Another constraint is that the local oscillator must be strong enough (a) to allow the output beat signal to
well-approximate an undistorted signal in noise and (b) to allow the heterodyne "gain" to be large enough

that the Gaussian noise level, set by the incoming signal, is larger than any intrinsic thermal noises in the
detection and post-processing electronics.

For so-called quadrature modulations-meaning that the signal varies in the two dimensions, in-phase
and quadrature-it turns out we will need to calculate the two-dimensional Gaussian probability of the
plane missing a wedge-shaped section, as shown in Figure 4.

Figure 4. Definition of Craig'sfiuction.
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Although there have been many versions of formulas defining this probability, Craig's function [7],
which can be expressed as

I --y'v D2sin 2 (y/) (6)f. (,) exp 2 sin 2 (0) jd_

0

seems to have the best properties, including its ease of numerical integration and the fact that the SNR
value is presented linearly in the exponent of the integrand. Here, g'12 is the symbol signal-to-noise ratio.

Homodyne

The architecture for a homodyne front end is shown in Figure 5.

Received 0 3-dB Lowpass Linear
signal at X0,matched

phase 0o F 0[ filter

Strong local
oscillator at 0, * ------- Phase *---------

phase '0 control

Figure 5. Homnodx'ne receiver (balanced configuration).

The difference between homodyne and heterodyne is that the homodyne local oscillator is at exactly the
same wavelength/frequency, polarization, and optical phase as the incoming signal. The output beat
signal is thus a coherently derived baseband signal (near DC). There is no intermediate frequency carrier.
The expanded-bandwidth requirement of the heterodyne system is thereby avoided. Furthermore, it can be
shown mathematically that the signal-to-noise ratio at the output of the filter/sampler is double that of

heterodyne-that is, 3 dB better-due to the lack of an "image" signal at minus frequencies. (See Figure 3.)
The probability density function of the output of a homodyne receiver is the same as that of heterodyne, but
as if the SNR were twice as large.

The drawbacks of homodyne are that (a) an optical phase-locked loop with very tight coupling back to the
input is required to keep the LO in phase with the received signal and (b) the "baseband" output really

only carries amplitude and sign information and thus supports only one-dimensional signals. Variations of
this architecture that try to measure two-dimensional, phase-related modulations (such as QPSK-where
a homodyne QPSK receiver splits the signals with an optical hybrid [3]) turn out to give performance that
is no better than heterodyne. On the other hand, such a homodyne QPSK receiver allows for a coherent
QPSK receiver with only baseband electronics, a significant advantage over QPSK heterodyne with its
large receiver bandwidth requirement.
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Preamplification

A perfect optical preamplifier is very like an RF amplifier: it takes a very small (noiseless, in this
discussion) optical signal and amplifies it with no distortion up to a more usable level, with the cost of the
addition of a certain amount of noise. This output signal level is defined as that level such that further electro-
optical processing adds only a negligible amount more noise. As in RF amplifiers, noises in the amplifiers we
will discuss (e.g., doped fiber amplifiers) are well modeled as additive, white Gaussian processes.

We will assume the most efficient optical amplifiers with 3-dB noise figures. This can be shown to
correspond to the fact, as in the heterodyne receiver, that the total signal-energy-to-noise ratio in a match-
filtered post-amplifier symbol measurement is equivalent to the average number of symbol photons seen
at the input [22].

Note that certain properties of an optically amplified signal are the same as those of the electrical
heterodyne signal: the desired signal is at a level that is easier to detect with many types of detectors and
the otherwise noiseless signal is now embedded in white Gaussian noise. However, the heterodyne signal
has been converted to an electrical signal on an IF carrier. The preamplified signal is still optical at its
original wavelength. Usually, the detection process is noncoherent because if a coherent method had been
available, then a coherent optical receiver would likely have been available. We should also note that
optimal matched filtering in an optically amplified system must be in the optical domain since only a
certain fraction of the noise effects can be removed post-detection. Usually, it is difficult to achieve true
optical matched filtering, although adequate approximations are available [6].

We should make one important note here. The small, noiseless, but inherently unmeasurable input optical
signal has properties very different from an amplified version of it, which has had classical Gaussian
noise added to it. We will discuss this further in Section 4.

A signal that is preamplified, optically match-filtered, envelope-detected, and sampled has the Rician
probability density function

fRi, (a,r) = rexp[(- 2+-i)]10(ar) (7)
2

where r is the envelope of the signal being measured (r2 is the power) and where the envelope of the
desired signal measurement is

a= 2N- (8)
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The randomness exists because of the narrowband (due to the matched filtering) Gaussian noise in the

signal. When there is no signal, only noise, this density function becomes Rayleigh,

JfR,,,. (r) -f Ri,, (0, r) (9)

= rexp(-2r)
2

The cumulative distribution finction of the Rician density is called the Marcum Q function

(10)
Q(a,b) =- f•.R (a,r)dr

1,

There are a number of published algorithms for efficiently calculating this function [211.

In the case of quadrature modulations with noncoherent detection, we will need to calculate the
probability of measuring phase diferrences over wedge-shaped areas of the 2-D signal plane. With many

similarities (by design) to Craig's function above, Pawula [1 5] showed that the relevant probability can be

written as

(11)

±7fej p2 sin2 (V/f) 1
pP,2 [12 + cos(V) cos( 0)]

This function is also amenable to numerical integration.

Real Detectors

Options discussed so far-photon counting, preamplified, and heterodyne and homodyne-assume perfect,

noiseless detectors. Real-world detectors add noise to varying degrees. Avalanche photodiodes (APDs), for
example, can operate like photon counters but with appreciable noise. (Generically, systems that make

measurements of signal levels, and possibly add noise, are known as Direct Detection systems.) Although

real detector models should be used when analyzing real receivers, their performance is not fundamental and

depends on device design parameters that trade off certain inherent noise properties. Therefore, we will

restrict ourselves to the basic receiver models. For communications system variants that require analyses
with other noise or distortion features, it is left to the reader to extrapolate from the results given here.

2.3 REQUIREMENTS OF THE CLASSICAL RECEIVERS

We can see, from the previous discussions, that there exists quite a range of receiver structures that can be

employed. Each receiver type has certain requirements for what it needs to know, deduce, or control. In

this section, we will examine more closely these requirements.
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The one universal requirement is timing. All receivers need to know, or deduce, symbol timing. In fact, in
our noiseless system, a photon counting receiver can do without any other knowledge. although practical
limitations mean that the wavelength must be within the bandwidth of the detector.

A preamplified receiver requires, in addition, knowledge or control of, to some degree, (a) wavelength-
in order to fall in the band of amplification and the matched filter; (b) spatial properties-because many
optical amplifiers have single-mode characteristics; (c) polarization-because opposite-polarization
amplifier noise, if any, needs to be filtered out for best performance; and (d) baseband waveform shape-
because optimal filtering of the post-amplifier Gaussian noise requires a matched filter based on this shape.

Heterodyne and preamplified receivers require knowledge and/or control of wavelength, polarization, and
spatial properties in order to generate a local oscillator that mixes with the signal. Homodyne receivers
require, in addition, knowledge and/or control of the optical phase. As in the preamplified receiver, the
added Gaussian noise requires a filter matched to the baseband waveform, although in the heterodyne and
homodyne cases, as mentioned above, the filter is electrical.

We will assume throughout our analyses that fully matched local oscillators and matched filters are
available in our receivers, in addition to perfect symbol timing.

Because the homodyne receiver uses the phase of the incoming signal and measures only signal
amplitude, it is a so-called coherent receiver, to be analyzed later. Since the output of the heterodyne
system is an electrical IF signal, its follow-on electronics can employ either coherent detection
techniques-using the deduced electrical phase of the IF carrier-or noncoherent techniques-measuring
only electrical power using square-law detectors. Once again, both of these coherent techniques require
electrical matched filters.

We must next decide how we wish to make and process our measurements. If the modulation requires
deducing the presence or absence of a pulse, there are several possibilities. In a noiseless, photon-
counting system, counting any photons vs counting no photons makes the decision simple. In
preamplified, heterodyne, and homodyne systems, the added Gaussian noise means that optimum
detection of a pulse requires both a matched filter and a threshold that divides outputs into those
announced as "pulse" and those announced as "no pulse." The optimum threshold must be based on
knowledge of the signal and noise levels, which both must be either measured or known a priori.

Optimum quantum receivers, to be discussed at length later, will be seen to require knowledge of all of
the parameters discussed so far.

Finally, once the signal has been "received," a receiver can then select one of several types of
measurements, summarized in Figures 6 and 7. If there is no decoding to be done, bits or symbols must be
decided upon, in so-called "hard decisions." If there is a decoder, a number of options are possible.

For a decoder to make maximum-likelihood (ML) decisions, it uses all the information it gets from the
receiver. If hard decisions are all it receives, then the decoder's ML decision is equivalent to assuming a
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constant average signal-to-noise ratio (SNR) through all the symbols. If the receiver can make other
measurements of the received waveform, then the decoder's goal is to use this information in its ML
decisions.

The optimum receiver calculates the likelihood of all possible code words (possibly a huge number), each
of which may last many bits. The decoding decision is made by choosing that code word that had the
greatest (maximum) likelihood.

In classical communications systems, these likelihoods can be built up by first making amplitude and/or
phase measurements independently on each channel symbol. (These are sometimes called "soft decisions"
because they are measurements of information concerning the symbols, without actually making the
"-hard" bit decision.). Then, a processor constructs, usually implicitly via complex mathematics, the
likelihood estimates of all possible received code words and then finally makes its code word decoding
decision. Both hard- and soft-decision techniques are available to us for photon-counting, heterodyne,
homodyne, and preamplified systems. We will see, however, that quantum optimum systems have
different properties in each of these steps.

Binary by comparing

- Data bits sent to destination,
Hard decision or

- Channel bits sent to decoder

Sof ~ ~ ~ ~Bt decisionMesrmnso

Soft decision M o - Information sent to soft-

filter outputs dcso eoe

Figure 6. Binary receiver options.
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Symbol decision "
by first crossing

M-ary of threshold
(suboptimum) - Symbols sent to decoder,

or

Hard decision - Symbols translated to bits
* Data bits sent to destination,

or
Symbol decision 9 Channel bits sent to decoder

Measurements of Information sent to soft-
Soft decision all relevant dcso eoe

filterdecision decoder

Figure 7. M-arv receiver options.

All of the requirements for the different receivers are summarized in Table I. The table shows which
receiver types need knowledge or control of which parameters. It also lists the subsystems typically used
to estimate the parameters. The modulations assumed include OOK, orthogonal modulations, and PSK,
all of which will be described in Section 5.
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Table 1
Knowledge Requirements of Communications Receivers
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Homodyne Coherent Soft Decision X X X X X X X X
Heterodyne/Pre-Amp Non-Coherent Hard Decision X X A A X X X
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Now that we have finished this whirlwind tour of receivers and have introduced the mathematical
functions needed for their analyses, we will examine the metrics of communication system performance.
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3. INFORMATION THEORY OF CLASSICAL SYSTEMS

3.1 NOTATION AND BASIC ERROR PROBABIrlTY FORMULAS FOR CLASSICAL SYSTEMS

We will need to distinguish between peak and average powers as well as energy per pulse, bit, and

symbol, so we propose the following notation throughout: Whether a channel symbol corresponds to a

single bit or multiple bits, we will call it -channel symbol." Let Np be the average number of photons in a

received pulse, Ns the average number in a channel symbol, and N1, the average number in the time

corresponding to a source bit. Let Tp be the time duration of a pulse, Ts the time duration of a channel

symbol, and TI, the time duration of a source bit. We thus have that Np/Tp is the (pulse-averaged) peak

received power and Ns/Tý is the average received power. Relationships between the various parameters
will be explained for each format.

For soft-decision systems, we use the notation Pix(ylk) to represent the probability density function of

receiving the (sampled) random quantity Y = y given that the kth symbol at the input X was sent. (We can

also see that an even more general case allows nonquantized inputs, X). We may drop the subscripts X and

Y when the variables are obvious. The value v may be the single voltage sample at the output of a

matched filter, or it may correspond to a vector of measurements of M sampled filter outputs. We number

these symbols from 0 to M - 1. For hard decision systems, we use the notation P)1x(ilk) to represent the

probability that symbol i is announced by the receiver when symbol k is sent. For M-ary and coded

systems, we use the notation pm to mean the input probability (or frequency, or prior probability) that

symbol i is sent.

The average probability of a hard decision M-ary symbol error is given by the formula

,•1-1 ,•l-t(12 )

kZ Z PY IX(jlk)
/=O 4=0 =0

=I - l ipiPlx (jIj),

which, for binary systems, is equivalent to

Psý = P, P(0 11) + POPo 10) •(13)

Note that, if Po = Pi, then a symbol error is equivalent to a bit error, P,,, where we let Ps and P1, be,

respectively, the symbol and bit-error probabilities.
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Remember from basic probability theory that

Al (14)Y, Py.rx (jlk) = I

and

(15)
P),Ix (jIlk)4 = P,i (j),1

where we let Py(j) define the unconditional probability density function of the output, Y =j.

In Section 5, we will investigate two basic classes of modulations: binary, and nonbinary. 1'he nonbinary
modulations we will investigate will all have a certain symmetry in that each of the M signals is related to
the set of remaining signals in the same way. That is,

P(j I k) = P(j + 1I k + 1) (16)

= P(j-k 0)),

where the sum and difference are taken modulo M. Since no signal's relative properties are different from
any other's, we will be assuming that the prior (i.e., the input) probabilities are equivalent, i.e., p•A I/M
for all k in the symmetric M-ary system. In this case, Equation (1 2) would reduce to

Pl - I-P(010). (17)

Furthermore, Equation (15) would reduce to

P(j) = l/M, (18)

which means that, in such symmetric systems, the outputs are also equiprobable.

One last topic regarding M-ary symbols is the mapping of bits into symbols and the symmetrical problem
of mapping received symbol decisions into source bits. It is of interest to know the error probability of the
final bits when it was the symbol error probabilities that are usually calculated. Of course, every system's
unique mapping needs to be examined on its own merits. However, in many mappings-in particular so-
called Gray-code mapping, where there is exactly one bit difference between subsequent symbols-it can
be shown that the probability of a bit error is

(19)

M

2(M - I)
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3.2 CLASSICAL CHANNEL CAPACITY

Definition

Channel capacity is the theoretical maximum rate at which source data can be transmitted error-free over

a noisy or quantum channel to the destination. It is the modern metric against which all communications

system performance should be compared. Capacity, C, is a function of the average number of photons

per channel symbol that is available at the destination. It is usually calculated in (source) bits per channel

symbol time, a rate, but can also be specified in source bits per second or some related, correctly
normalized quantities.

It is known that certain long, complex coding schemes exist that can allow a communication system to

approach this performance limit. A code at rate R < I means that the code transmits I channel bit for
every R source bits. If we employ a capacity-achieving code, i.e., a highly efficient code at code rate, C,

then, by definition, it will be able to achieve error-free transmission through the channel at the theoretical
minimum power per original source bit.

The error probability of a coded system is lower-bounded by the following formula [1 71,

P ,_H 'L[ C(RN,)R 
(20)

where the binary entropy function is defined as,

H(p) = -[plog(p) + (I -p)log(l -p)]. (21)

We will use only base-2 logarithms throughout. This entropy function is plotted in Chart 1.

In Equation (20), C(N5) is the capacity in source bits per channel symbol as a function of photons per

symbol, Ns, and R is the code rate employed. (Thus, R N1, = N5 ). Since H(p) is positive, we see that the

error rate cannot go to zero if R > C.

Capacity Formulas-Hard Decision

In this section, we will give the basic formulas for classical channel capacity. We will present the

formulas for both hard- and soft-decision systems. We will also provide some special cases, which we

will refer to later.

Classical channel capacity for hard-decision systems can be calculated as [ 11]

C( = max Z piPyx (j I i) log I'IX (I'1 (22)

I ,, Pr (J)
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P, (J) = Z PkP•,X (jl k), (23)
k

where Py(j) is the average probability that outputj is produced.

(We are using the term "classical" here to distinguish it from the optical quantum systems, to be described
in the next section). This value has units of source bits per channel symbol. The formula is shown as a
maximum over all choices of prior probabilities since this is usually a free parameter for the system
designer.

The formula can also be written in a way that shows the symmetry between the input and the output.
(Capacity is based on the average mutual information between the inputs and the outputs.) The following
equation is equivalent to Equation (22):

C, = max -P (i, j)log -Xy U, P (24)
11 ,.i, XYPX (i Py (j)

PIy (i, j) = P1Ix (Jl i)PV (i) (25)

JX (i) = p, (26)

For a binary input/output channel, we can rearrange Equation (22) to be

C( = max{H 1,,P(I I 1)+ poP(l 10) - poHl P(l 10) -pIH P(O I)}. (27)

In the case of symmetric M-ary modulations, the formula for channel capacity reduces to

C(- = log(M) + • P (0 o)log P (10) , (28)

which, when describing the binary symmetric channel (BSC; M =2, P, = p= 1/2) fuither reduces to

C(, = I - HIP (I 10)]l. (29)

Channel capacity for the BSC as a function of symbol error probability, P (0 11), is plotted in Chait 2.
This curve shows us the symbol error probability at which a channel capacity-achieving code will
"operate." Notice that the lowest rate capacity-achieving codes can operate with quite high crossover
probabilities.
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Capacity Formulas-Soft Decision

For a soft-decision system, classical channel capacity is calculated as (with the most general, analog

transmitted inputs, X)

lx)0)
C( = sup fpx(X)pYIx(Y Ix)log dxd(Ip•t I)) "~ "P (Y)

Py (Y) = JPyix(yIx) px (x) dx (31)

or, for a more typical M-ary input alphabet,

cc= max fPip X(Y0109 PyIx( Yli) dv (32)

S/,A -7Py (Y)

l)y (Y) = Z~P~(Yi. (33)

I

Perhaps a more useful way to write Equation (32) is

m=ax{f - pp (yi) log•p' PYlx(YI k) d (34)

C(ý= ax P IX Y i)lozA 10j ( YI'

From this, the special case of binary systems reduces to

P (y, 
(35)

c,( -- of(y IO0)log po + 1,3 d)

JPI y f I7lo 1 ) lo0) 1 ,-. I VI ',,o

or, equivalently,

Cc = pI Jp(.y l)logp( yI l)dv + po Jp(YIO)logp(yIO)dv - Jp(y) log p(y4, (36)

where

P07) = I)•('I!)+PoP(yI0). (37)
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The soft-decision capacity using M-ary symmetric signals reduces to

CC =100(M)- fp(Y0)log I[+ I p k) dv(8

We should note that the measurement, y, here may actually correspond to a vector of measurements (such
as the outputs of several different filters), and thus the integration over v may be a multiple integration.

Except in very special cases, we will find that soft-decision channel capacity needs to be calculated via
numerical integration because of the log inside the integral. For the even more complex multiple-integral
version, a technique often used is to notice that the integral is a kind of expected value. Thus, a Monte
Carlo simulation using computer-generated random variables can be used.

It can be shown (and was shown by Shannon in his seminal work) that starting with Equation (30) and in
an otherwise unconstrained additive Gaussian noise channel, the channel capacity is [1 8, 19]

C, = log(l+N,). (39)

(For the receivers we will examine, this formula will be relevant to the coherent heterodyne architecture.)

As discussed in an earlier section, the noise in a holnodyne receiver is also Gaussian but at half the level.
Since homodyne systems do not allow for quadrature information, however, they are only half as
bandwidth efficient as heterodyne.

The capacity curves for heterodyne and homodyne unconstrained signals are plotted in Chart 3.
(Sometimes the heterodyne equation is shown with other factors of 2, when the normalization is with
respect to dimensions. Equation (39) is correct for source bits per channel usage.) This ultimate capacity
can be achieved using Gaussian-distributed, i.e., not quantized to M levels, source signal values.

Measure of Efficiency

Although the basic value of channel capacity-source bits per channel symbol at a given symbol photon
count-is highly useful, we sometimes want to know the cost of achieving a certain data rate as opposed
to knowing the data rate achievable at a certain cost (signal power). A way to do this is to calculate the
photons required per source bit as a function of some speed or redundancy property of the code. We will
present this efficiency at channel capacity vs bandwidth expansion, where bandwidth expansion is a
combination of the expansion due to the code parity check overhead plus the expansion due to
modulation.

Since NX = average photons per channel symbol, and CQ = source bits per channel symbol, we see that
Ns / C, = average photons per source bit. That is, Ns/Cc is the number of photons required at the receiver
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in order for a system to reliably deliver source bits using a channel-capacity-achieving code of rate C(..
The bandwidth expansion due to coding is just I/Co, and the bandwidth expansion from modulation must
be calculated on a case-by-case basis. As an example of efficiency at channel capacity, see Chart 4, in
which we have plotted the efficiency of the Gaussian channel capacity for both heterodyne and homodyne
systems. Notice that heterodyne efficiency bottoms out at In 2, or -1.59 dB (with homodyne 3 dB lower).
Thus, with a (high bandwidth, low code rate) capacity-achieving code, we should be able to transmit
source bits at rate R1, by delivering to the heterodyne receiver R1, In 2 photons per second. We can also see
that heterodyne becomes more efficient than homodyne for normalized bandwidths less than about 0.63 1.

3.3 CLASSICAL COMPUTATION CUTOFF RATE

Definition

For many years, the computation cutoff rate (sometimes called computational cutoff rate or even just

cutoff rate) was considered the maximum rate achievable by buildable codes. With the advent of turbo-
codes and their progeny, classical channel capacity (which is greater than cutoff rate) is now known to be
essentially achievable, although the cutoff rate, Rc (sometimes called R0) is still a good upper bound for
many classical coding schemes. It is similarly parameterized as source bits per channel symbol.

Cutoff Rate Formulas-Hard Decision

The classical computation cutoff rate for hard-decision systems is defined by the formula [I I1

[Y (40)

RC -log min Pvix( lj.k

For a general binary channel, this formula is

{oJI-2  [PI- P(I0)(I-P(01I1)) (41)

R I o 1- 2P(,I I)(] - P(. 10))

For our symmetric M-ary channel, we find

R( =log(M)-21og k (42)

which, for the BSC, further reduces to

1 (43)R(, = l -log [I+ 2VP( 1 0)P( 0 )]•(3

The cutoff rate for the BSC is shown in Chart 5.
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Cutoff Rate Formulas-Soft Decision

For a soft-decision decoder, the classical computation cutoff rate is

(44)

for the most general analog input case. For the more typical discrete, M-ary input case, it is

(45)

R = -- log rninLZPA p(.,Ik)] dy

For a binary input system, this reduces to

R" =-Ilog( I - 2pp, + 2pop, fI/;( yIO0)P(. y t1dy1 (46)

As in the capacity calculation, we should note that the measurement, Y, may be a vector of measurements
and thus the integration over y may actually be a multiple integration.

We can see that the soft-decision cutoff rate is made up of the log of sums of integrals, each integral being
the geometric mean of two density functions. Such an integral is called a Bhattacharya coefficient. Let us
define this integral, with a nonstandard but easily understood notation, as

KB(f(y),g(y)) = ff(y)g(y)d y . (47)
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In the M-ary symmetric case, the cutoff rate can be reduced to

R(,. = log(M)- log cB[p( y 10), p( y I k )](48)

For the BSC, the soft-decision cutoff rate further reduces to

Rc = I-log [1 +B[p(y 10), p( Y 1)] (49)

It can be shown, starting with Equation (44), that in an otherwise unconstrained additive Gaussian noise

channel, the cutoff rate for our heterodyne system is [20]

R -(50)
ln(2) 22

-O R(N s ) •

As in our capacity calculations, the version for homodyne is 3 dB better, but half as bandwidth efficient.

These formulas are plotted in Chart 6. The efficiencies at these Gaussian channel cutoff rates are plotted

in Chart 7. We see that they bottom out at 2 In 2, or 1.42 dB, and In 2 or -1.59 dB, exactly 3 dB higher

than the efficiencies at Gaussian channel capacity for heterodyne and homodyne.

Calculation of these cutoff formulas is much simpler than those of the soft-decision channel capacity.

Very often, Bhattacharya coefficients even have a closed form.
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4. INFORMATION THEORY OF QUANTUM SYSTEMS

It has been known since the 1960s that the optimum approach to optical signal detection is based on
quantum state descriptions and projection operators. As we are interested only in optical systems in which
there is a large loss between the transmitter and receiver, we will be considering only so-called pure,
coherent states. In these cases, solutions to the mathematical optimizations have been found for most
relevant formats.

Interpretation of the mathematically optimum receivers as implementable physical systems is still
largely unknown and the topic of much research.

The following section is an extremely cursory introduction to the relevant theory and mathematics. (See
[12] or[13] for more.)

Definitions

Quantum states are described using infinite-dimensional vectors IV) in a Hilbert space over the field of
complex numbers, with Hermitian conjugate vectors (M//[, inner products (VItq), outer products I /Xv 1,
and matrix trace Tr(.) defined in the obvious ways. It is the outer product that describes a so-called pure
state.

A coherent state has the further description

Cr 12 a"(51)Ia) =exp(-I l-/2)• 1/2,----• "
(,,)" 2(n!)

for some complex number, (x, where In)are orthonormal, so-called number eigenstates. (It is
straightforward to deduce the Poisson counting statistics from this model.) Thus, the inner product
between two coherent states can be calculated to be

1(arfl) I=exp(-I a-,8 12  (52)

and so

(a ) (53)

Notice that, by Equation (52), there cannot be truly orthogonal coherent states.

As in the classical description, transmitters can select a coherent state signal to transmit with prior
probability pi.
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Measurements at the receiver are described by so-called probability operator measures, which are sets of
nonnegative-definite Hermitian operators, summing to the identity. For the optical systems we are
interested in, the signal states are coherent, pure, and linearly independent [12]. In this case, the operators

can be shown to take the form of outer products, called projection operators, of ornhonormal vectors,

1174 ), which sum to the identity

11 I7 )(14(54)

It is the task of the receiver designer to find the set of 1ri,) to optimize the relevant metric.
Unfortunately, measurements described by operators do not (yet) have simple physical interpretations.
Thus, most of the results in this quantum section are of theoretical interest only although the excellent
performance they predict will provide a great incentive to find such physical interpretations.

As discussed in Section 1.0, noiseless quantum systems incur errors not because of intrinsic added noise
but because the signals themselves are not completely measurable. Furthermore, a particular physical
measurement on a quantum signal means that the signal is then no longer available for making further
arbitrary measurements. This is the major difference between quantum systems and RF systems. In an RF
system, by including a low-noise front-end amplifier, the RF signal plus noise can be made large enough
so that it can be split into many replicas, each of which can be measured by a different matched filter.

We could try the same approach with optical signals, i.e., put the optical signal through an optical

amplifier so that we could make multiple measurements at its output. Unfortunately, as we mentioned
earlier, this signal in Gaussian noise would have substantially different properties from the original
noiseless signal. Optimum processing requires a very different approach for multiple measurements that
must be based on operator theory.

We can see that the fact that the operators sum to the identity specifies how any set of multiple
measurements must be related. Changing one operator element ("matched" to a zero signal, say) means
that the other elements ("imatched" to the other signals) must also change. Remember that in an RF
system, each of the post-preamplifier filters may be selected independently.

Quantum Optimum-Hard Decision

Hard symbol decisions can be made with these quantum operators. We choose them to minimize the
probability of symbol error, defined as in Equation (12).

Although the quantum mechanical mathematics is infinite-dimensional, it can be shown that the coherent
problem can be reduced to one in many fewer dimensions. We only need to consider the variables

.lk = (55 I)')

for the pure state,
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PA I X)k I k=0,1,2 ...... M-1 (56)

with prior probabilities pA, and the operator

[1 =71 )07 i j I 0= 0,1,2 ...... L-I (57)

with the property
- (58)

'y H1  I.

The basic property of projection operators is that

P(jlk) =1xI, 12 (59)

That is. the receiver announces signalj when k is true with probability P(ilk) defined here.

Notice that the dimensionality of the operators does not need to be the same as the dimensionality of the
signals. If L = M, then it is a true hard decision, with announcements of the signal decision. However, we
can choose L > M under some soft-decision-like metric, if we like. (Analogously, in classical systems, we
can perform hard decisions, or describe the outputs, y, with 2, 3, or more bits. The more bits we choose,
the closer we get to soft decisions.) For our quantum hard-decision calculations, we will use only L = M.
We will discuss the L > M case in the next section.

It has been shown (See [12] for a summary.) that to minimize the probability of symbol error, the solution
must satisfy the following set of nonlinear equations:

Pj XkjXjj P4) XkXIAk 
(60)

where it is simple also to find that

Z xAIXA* = (O •" (61)

Even these equations are difficult to solve in general in closed form although solutions have been found
for our binary and M-ary symmetric cases.
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These hard symbol decisions can be used as is, or can be fed to a classical decoder with performance
described using the formulas of classical channel capacity Equation (22) or classical computation cutoff
rate Equation (40) with P(j/k) from Equation (59). This approach is sometimes called "semiclassical"
because the hard symbol decisions are made using optimum quantum techniques, but the decoding is
done classically.

Because of the property mentioned at the end of the previous section, the operators that optimize the
probability of error are not necessarily the same as those that optimize semiclassical channel capacity or
semiclassical computation cutoff rate. In other words, the optimum hard symbol decisions derived above
for minimization of the symbol error probability may not be the same decisions that optimize capacity or
cutoff.

It turns out that, for binary (and M-ary symmetric) systems, it is known that the two (or Al) measurements
that make up the P.s-optimizing solutions do, in fact, satisfy necessary conditions lbr semiclassical capacity
optimization. (As of this work's writing, sufficient conditions are not known.) Cutoff optimization has
similar properties. It has been shown, however, that the optimum capacity-achieving solution has d <_ L <_ d1,
where d is the dimension of the Hilbert space in which the signals can be defined [8].

Quantum Capacity-Maximum Likelihood (Soft Decisions)

As discussed in the previous section, we can choose L, the number of operators in Equation (57) to be
greater than M, the number of symbols. This is analogous to soft decisions in RF systems, where each of
M measurements might have 2 or more bits of resolution in them, resulting in more than Al possible
outputs. All these bits of descriptions can then be fed to a soft-decision decoder. We will see that some
M-ary quantum receivers do, indeed, perform better in coded systems when L > M.

In the correct analogy with the classical maximum-likelihood decoder, though, the fully optimum
quantum decoder tries to make ML decisions between all the possible received codewords. As an
example, for an (n, k) block code with 24 codewords, each constructed of n > k binary channel symbols,
the quantum decoder views the problem as an M 2k-ary problem. As mentioned earlier, in classical
systems, this is done implicitly by measuring each channel symbol and then computing the 24 MI,
estimates after the fact in a processor. In quantum systems, however, this estimate cannot be built up by
measuring each sequential symbol independently, but must be done by making measurements on the
complete codeword as if it were a much more complex quantum state. This is sometimes known as an
"entangled" quantum receiver.

It will be seen that such an optimum quantum receiver has a strictly better performance than any other
receiver, including the optimized semiclassical decoding receiver. Its performance is described thus:
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Calculate the following description (density operator) of the quantum information source

It (62)I,, Pk, IIkX
k~l

where we use the subscript p to remind us that it is a function of the prior probabilities, which can be
selected to optimize performance. The quantum channel capacity can be shown to take the form [ 13]

C, Max -Tr[ logop (63)

(which is known as the von Neumann entropy). It is usually calculated by first finding the eigenvalues, 2,,
of , By Equation (62) we see that these are nonnegative and sum to 1, and are thus a lot like
probabilities. Using these eigenvalues, we can equivalently calculate

M (64)CC, =:- IA log, A,
k=1

where we have suppressed the maximization over the priors.

For M-ary modulations with the symmetry property, we will find it useful to use the related quantity

Vk = MAA, (65)

which leads to

Cc , logM---vk log= 0. (66)

It can also be shown that, for this M-ary symmetric case, the symbol error probability described by
Equation (60) can be written explicitly as

I At L ]2 
(67)

Similar to the classical case of unconstrained signals in Gaussian noise, there is a so-called "Gaussian"
quantum capacity for unconstrained coherent signals, given by [13]:

Co = (I + Ns ) log( + Ns )Ns log Ns. (68)
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This formula is plotted in Chart 8. It is the ultimate performance of all the methods we will have
examined.

We have also plotted the efficiency at Gaussian quantum capacity in Chart 9. The most interesting feature
of this curve is that it does not bottom out as does efficiency at Gaussian classical capacity. Instead, it
continues to improve as more and more bandwidth is used-that is, as the error-correction coding rate
gets smaller and smaller. Theoretically, the channel capacity can be shown to become infinite, i.e., the
efficiency approaches an infinite number of bits per photon, although, of course, real-world (and perhaps
even model validity) constraints prevent this. Practical limits on efficiency seem to be about 10, or
perhaps 20, bits per photon.

The fact that channel capacity (in source bits per channel symbol) increases as the receiver entangling
increases from I to 2 to n consecutive channel symbols is sometimes called superadditivit,.

Quantum Cutoff Rate - Maximum Likelihood (Soft Decisions)

The quantum computation cutoff rate is described similarly. Using the same source description as in
Equation (62), it can be shown that [ 1, 13]

S• (69)
R =- max log [Tr ,- 2(]

-max log Z •

For symmetric modulations, we have

!Rzz (70)RQ = logM -log-- 1-'v
ZM k-1

Similar to the classical case of unconstrained signals in Gaussian noise, there is a "Gaussian" quantum
cutoff rate, given by [ 13]:

-c =__ I '+N ]+lo{(l 2±4 (71)

= RO(4Ns . (72)

[Compare Equation (50).]
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The Gaussian quantum cutoff rate is plotted in Chart 10, and the efficiency at Gaussian quantum cutoff

rate is plotted in Chart 11. We see that this efficiency is exactly 6 dB lower than that of Gaussian

(heterodyne) cutoff, and thus bottoms out at -4.6 dB. Thus, there is a big incentive (more than 5 dB) to

find coding schemes that achieve quantum capacity and not just quantum cutoff rate.

The Square-Root Measurement

Although Equations (60) and (61) are difficult to solve in general, a set of solutions has been proposed

that satisfies these equations in many cases. Let us define measurements as

17 i/ =

where the matrix inverse may need to be a generalized inverse. This has come to be known as the square-

root measurement and has been investigated in several works as good approximations to optimum

solutions. In fact, it was recently shown [10] to be symbol-error-rate optimum for a wide class of

modulations, including all binary modulations, as well as equal-priors orthogonal and MPSK.

Conclusions

We end this section by reminding the reader once again that physical implementations of quantum

optimum receivers, demodulators, and decoders are still unknown, as are codes that might use them.

These are all topics of much research.

(It would be fair to note that some years ago Sam Dolinar at MIT invented a nearly implementable

receiver that achieves the optimum quantum bit-error probability for any binary modulation. (See [ 12] for

a simplified description.) This receiver has certain similarities to homodyne systems in that it requires a

phase-coherent LO. Unfortunately, neither Dolinar nor subsequent researchers have successfully

generalized this method in an implementable form to M-ary symbol decisions or, especially, to ML

decoding.)
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5. MODULATION FORMATS

In this section, we will apply the general formulas from the previous sections to specific modulations. For

the most part, we will assume prior probabilities and then calculate the "capacity" one could achieve

given those assumptions. Sometimes, we will find that, in certain regions of the curves, selecting a

different set of priors would have given better efficiency or throughput. In the true spirit of maximizing

capacity, one would choose the optimizing prior at each signal level as long as the selection did not

violate some other system constraint.

5.1 GENERALIZED ON-OFF KEYING (OOK)

OOK: Preliminaries

During a symbol period, Ts, the transmitter sends either nothing (corresponding to a 0 and with

probability pr) or a pulse (corresponding to a 1, with probability pl) such that an average of Np photons is

detected by the receiver during the pulse. Note that this is a binary modulation even when p, • po. The

average received number of photons per symbol is

Ns = p, Np. (73)

We thus see that the peak-to-average ratio of photon flux (and power) is l/p1. Traditional OOK uses the

values p, = p0 = 1/2 with a peak-to-average ratio of 2. We call the case Pi • 1/2 generalized OOK.

We note that the pulse can actually be of arbitrary shape although, in this analysis, we assume that the

pulses do not overlap. (Note that the instantaneous peak-to-average ratio would change for non-flat

pulses.) As discussed in Section 2.3, this shape must be known for optimum performance in receiver

types that need to separate the signal from additive noises.

OOK: Noiseless Photon-Counting Hard Decisions

Whatever the (classical) measurement type, a hard decision on whether a pulse is present or not requires a

comparison threshold. The receiver declares "I" if the measurement is greater than this threshold and "0"
if it is less. The threshold must be chosen to optimize the desired criterion.

A photon counter in a noiseless system has the easiest task of all the OOK hard-decision receiver types. If

it detects any photons at all, it correctly declares "1." If it detects none, it declares "0" and makes an error

only if a pulse was actually transmitted. Thus, with the Poisson model, we see that error probabilities are

P(I 10) = 0 (74)

P(01) = exp (- Np). (75)
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Symbol (bit) error probabilities can be calculated using Equation (13)

Ps = p, exp (- Np) = /? exp (- Ns /pl) . (76)

This bit-error probability is plotted in Chart 12 for the symmetric case, p, = 1/2.

We can also insert Equations (74) and (75) into Equations (27) and (41) to find that capacity and cutoff,
for the generalized case, are

C(, = H[p, (1 - exp(-N. / p, ))] - PH[exp(-Ns / p, )J (77)

R(, =-log[l - 2p, po (1- exp(-Ns /2/ ))] • (78)

These results are all plotted in Charts 13-16 for a variety of pi.

We can note here that generalized OOK can achieve higher and higher efficiency as the peak-to-average
power ratio increases. On the other hand, as this ratio increases, there are certain higher data rates that
become unattainable for fixed pulse widths. For instance, for p, = 1/32, the system cannot transmit more
than about 0.2 bits per OOK symbol.

OOK: Heterodyne and Homodyne Receivers-Coherent Hard Decisions

Heterodyne and homodyne coherent receivers (again, assuming sampled outputs of matched filters)
produce a signal, y, in Gaussian noise with normalized density function description

1)(Y 0) V •,( ) (79)

and

(80)

where s = I for heterodyne and s = 2 for homodyne. (Functions here were defined in Section 2.2.)

With these, and basing decisions upon a threshold, T, we find
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i (81)

P(l 0)= p(yIO)dy
T

= (D(T)

T (82)
P(0 I1) = J P(Yl l)dV

= I - DT .v 7

Inserting these into the formula for symbol error, Equation (13), we can optimize over T to find that the
optimum T satisfies

P, p(TI 1) = fo p(T1O) (83)

For this coherent case, the result is

sNp +In PO 
(84)

-2sNp

In the most-used symmetric case of pU = pl, we see that

T = NN,/ 2, (85)

which, when inserted into Equation (13), produces

P1, =D(jsNVp/2) (86)

=( s ).

Notice that optimum performance is achieved only if the receiver selects the threshold optimally, an
action which requires knowledge of the signal power at the receiver. A system that deduces this level in
real time is known as an Automatic Gain Control (AGC).

These heterodyne and homodyne probabilities for pu = P, are plotted in Charts 17 and 22. We can also use
Equations (81), (82), and (85) in Equations (27) and (41) to calculate channel capacity and computation
cutoff rate for hard decisions with general pi. Unfortunately, the values of the threshold, T, that optimize

35



capacity and cutoff are different from that derived in Equation (84). These values are best calculated
numerically. All these results are plotted in Charts 18-21 and Charts 23-26.

OOK: Preamplified and Heterodyne Receivers-Noncoherent Hard Decisions

In the preamplified and heterodyne noncoherent receivers, we use, instead of the Gaussian density, the
Rician density (defined in Equation (7):

,( y 11) =.t,, (R 4 .2 ) (87)

p ( v 10) = fR., (0, Y). (88)

Using a threshold, T, as in Equations (81) and (82), we find, using Equation (10)

P(l 0) = Q(O,T) (89)

P(01) )= I -Q 2&J-Np , T) •(90)

Inserting these into the formula for symbol error, Equation (13), and optimizing over 7, we find that T is

defined by (for the symmetric case of po = pi)

exp(Np) = I0 (T 2Np) (91)

or

T 0 I 1 (exp(N,, (92)

which must be solved numerically although it has a good approximate solution as

T= 12+N 12 (93)

Inserting this back into Equation (13), we can calculate the error probability, which is shown in Chart 27.
We can also use Equations (89), (90), and (92) in Equations (27) and (41) to calculate channel capacity and

computation cutoff rate for these hard decisions. As in the coherent hard decision section, the thresholds
must be numerically reoptimized for capacity and cutoff. The results are plotted in Charts 28-3 I.
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OOK: Quantum Receiver-Hard Decisions

The two-dimensional optimization problem described by Equations (60) and (61) can be solved using
polar coordinates with solutions given as trigonometric equations. These will not be presented here.
However, the result can be shown to provide performance described by [12]:

P(l10)= 
[I - 2p, exp(-Np, )1

V 1 [ -4 p o e xp(- N,,

P(0I1) =l/2 l- _4p, [I - 2 1, exp(-N(

from which we can calculate

AJ'~ (96)
P5 = 1/211- 1- 41,poexp(-Up)).(

These have been plotted in Chart 32 for po = pl = 1/2 . We can also use Equations (94) and (95) in
Equations (27) and (41) to calculate semiclassical channel capacity and semiclassical computation cutoff
rate for these hard decisions. These results are shown in Charts 33-36.

OOK: Photon-Counting Soft Decisions

In the noiseless case, we can see that there is no more information if we receive 2 or 3 or 10 photons than
if we receive 1. Thus, the soft decision capacity and cutoff are the same as for hard decisions. This would
not be the case, however, if there were noise mixed in with the signal.

OOK: Heterodyne and Homodyne Receivers-Coherent Soft Decisions

To calculate capacity using coherent soft decisions, we insert Equations (79) and (80) into Equation (36).
We find

(,- 2 log(2"fe)- fp(y)logp(y)dy(

with

P(Y) po).f; (y) + pL'; (Y-2sN ), (98)
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which requires numerical integration. (Remember, s = I for heterodyne and s = 2 for homodyne.)

Computation cutoff is similarly found to be

R(. = logIl-21o,0P p~C(•;y • ,,•(y),(9

where the Bhattacharya distance for Gaussian densities has the closed form solution

(Y - J N,, f(; (y))= exp(-sN,, /4) (l())

These results are plotted in Charts 37-44.

OOK: Preamplified and Heterodyne Receivers-Noncoherent Soft Decisions

To calculate capacity using noncoherent soft decisions, we insert Equations (87) and (88) into Equation (35).
We find

" f,?, (O2N, ) ] (101)

f'Rh 0y
- I. ff.,, 42 N7V,,y) log pI + Po i -,I A, .y

Computation cutoff is similarly found to be

R, :-log[l- 21,,)p1 +2 ;NopiB(!-,, (2p h (0 , (102)

where the Bhattacharya distance

" 2 (103)
B(.3i(,( 2N•p, y),fRi, (0,y ) =exp(-N1 , /2)f vexp(-v 2 /2),I 0 (y 2N•N, )d

does not have a closed-form solution and so must be calculated numerically. Capacity and cutoff results
are plotted in Charts 45-48.
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OOK: Quantum Receiver-Maximum-Likelihood Decoding

For quantum decoding, we need to calculate the eigenvalues of the density operator of Equation (62). For
coded OOK, it can be shown that [12]

A• 1/2[1± V -4p, po(l-exp(-N,,)) (104)

and thus

CQ H(= ) H(2A) (105)

and

RQ =-log(2 +2f) (106)

=- I og [I - 2 p, p(, (I - ex p(-Np)]•

These results are plotted in Charts 49-52.

5.2 ORTHOGONAL MODULATIONS-PPM AND FSK

Orthogonal: Preliminaries

An orthogonal modulation is one such that the integral of the product of any two different waveforms in

the set is zero. Orthogonal modulations can be either binary or M-ary for integer M. The orthogonal
dimensions can be time, frequency, polarization, or other features. The most popular tirne-orthogonal
waveform for lasercom is the pulse position modulation (PPM) set. Here, time is divided uip into M

consecutive, non-overlapping timeslots. Exactly one of the M carries a pulse, while the others are empty.
Usually, M is selected to be a power of 2, M = 2K. This way, an M-ary channel symbol represents exactly

K channel bits.

Notice that orthogonal modulations have the symmetry property discussed earlier. Thus, we will assume

equiprobable prior probabilities, p, = I/M.

We note here that PPM is very much like OOK with p, = IIM. That is, they both have the same peak-to-

average ratio and the same probability of sending a pulse. The difference is that PPM requires that there

be exactly one pulse every M, where OOK has no such restriction.

Frequency shift keying (FSK) has a single pulse per symbol, but it is a pulse of one of M wavelengths, or

frequencies. These are selected so that the time integral of the product of two of the sinusoids, over the

period of the pulse, is zero. This property is true when, for instance, the tones are separated by a

frequency l/TI,, where Tp is the time duration of the tone pulse.
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We can also send a pulse of one polarization or the orthogonal polarization (e.g., left-hand circular and
right-hand circular). Although the modulation called polarization shift keying (POLSK) is more general,
its simple, binary orthogonal form is in the class of orthogonal modulations.

Finally, we will see later that binary DPSK has the orthogonality property, too, although over two bits at a time.

The reason we group together these disparate waveforms is that they will be seen to have the same
analysis and performance.

Relationships between pulse, bit, and symbol photon counts for uncoded orthogonal signals are thus

Np, - Ný (107)

=.... Nt, log(M). (]108)

ttard decisions for orthogonal signals are different from OOK in that no threshold is required. The
receiver first losslessly separates the M orthogonal dimensions- -with different time slots for PPM,
different band pass filters for FSK, and so on. Measurements are then made on the M components. The
receiver selects the one that maximizes the likelihood of choosing the correct signal, usually the largest
measurement value.

We will plot capacity and cutoff as source bits per channel usage (i.e., PPM slot) even though the
formulas given are per channel symbol. These are then plotted versus average photons per usage as well.
These choices simplify the comparisons with OOK.

When we plot efficiencies achievable at channel capacity and cutoff rates, we would like to plot them
versus the total bandwidth expansion that the coding plus the modulation requires. The coding expansion
we know to be I/C. However, orthogonal modulation dimensions require extra bandwidth. M-ary uncoded
PPM time slots, for M = 2 , require M times the bandwidth of a single slot (channel usage) to deliver K
bits. Thus, the PPM modulation expansion is M/log2M). This value is then multiplied by the expansion
due to the coding. For instance, uncoded binary orthogonal requires 2 times the bandwidth of a single
slot. Notice that uncoded 4 -ary also requires this expansion.

M-ary FSK sends only one pulse per symbol, but the M optical frequencies must be separated by
multiples of 1iT/. For M-ary, we have M tones to deliver K bits, with a similar bandwidth expansion to
PPM. (Actually, the expansion is more like M-1 because that is how many frequency spaces there are
between M tones. Nevertheless, using the Milog 2(M) expansion formula for FSK is indicative of the
trades involved. For exact measurements of the bandwidth expansion, one would need to know the exact
spectrum of the transmitted pulses.) (If the system designer is more interested in the required speed of
electronics rather than in signal bandwidth, he might find it useful to normalize all these charts in some
other way.)
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Orthogonal: Photon-Counting Hard Decisions

A photon counter is used to make the M measurements on the losslessly separated components of the
noiseless signal. If any detector sees a photon, then the signal is correctly announced, and no error is
made. An error is made only if no photon is counted. This is known as an erasure because the receiver
knows it doesn't know the answer. Thus, there are really M + I possible outputs-M correct ones, plus an
erasure. Sometimes, the information that an erasure has taken place is useful to the subsequent signal
processing, and sometimes it is not. If it is not, the receiver can flip an M-sided coin to make a guess.

The probability of getting an erasure is seen to be

P(erasure I k) = exp(-Np,) (109)

and we then have

P(k Ik) = I-exp(-Np). (110)

Thus, the probability of a symbol error, really an erasure, is

Ps = exp(-N 1 ), (111)

which is shown in Chart 53.

If the decoder does not allow erasures, then the probability of a symbol error, after the coin flip, is

M -1 (112)P - Iexp(-N,,)

M

since it will map an erasure into a correct symbol only one time out of M. Using Equation (19) we see that
such symbol errors map into bit errors as

I (113)
P1, = exp(-N,, log M ) ,

2

shown in Chart 54.

We can calculate capacity and cutoff, assuming the decoder knows how to make use of erasures. The

results are

C(, = (I - exp(-Np )) log(M) (114)

RC = logM -log[1+(M -l)exp(-N,)]. (115)

Results are plotted in Charts 55-58.
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Orthogonal: Heterodyne and Homodyne Receivers-Coherent Hard Decisions

Similar to OOK, we need to calculate the probability density function of outputs with and without signals
in them. Let us call them correct and incorrect outputs, with output densities denoted p{.(y), and pj(y). A
symbol will be incorrectly announced if any of the incorrect outputs is larger than the correct output.
Equivalently, an error will be made if it is not true that the correct output is the largest. This hard-decision
symbol error probability is thus

Al (116)

fpc(V)[ PW(x) dyj

For our heterodyne and homodyne receivers, we have seen in the previous section that

P, (Y) =f. (Y) ((117)

and

where s = I for heterodyne and s = 2 for homodyne. In general, the integrals in Equation (116) need to be
calculated numerically, although for M = 2, they can be shown to simplify to

4( 4N,). (119)

The results are shown in Charts 59, 60, 65, and 66. Capacity and cutoff can be calculated by using this
formula for P• and observing symmetries:

C(, = logM - H(P1)- Ps log(M - 1) (120)

These results are plotted in Charts 61-64 and Charts 67-70.

Orthogonal: Preamplified and Heterodyne Receivers-Noncoherent Hard Decisions

For noncoherent receivers, we saw in the last section that

t)/ (Y) = .*Ri, (0, Y) (122)
PC(Y') = i: (Ný y) . 13
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We use these functions in Equation (116) to find the symbol error probability

P. =I- fexp[- (x+sNs )]/,,4 x) [ - exp(-x)] M-I dx. (124)
0

The term in the square brackets can be further expanded and the M terms integrated separately, to get the
final result

At = -( I)+M -Iexp(- (125)

1k k k+!

This formula is good for small and medium-sized M. The formula with large M, however, ends up with
numerical problems, and then Equation (124) needs to be integrated numerically.

These results are shown in Charts 71 and 72. The formulas for capacity and cutoff are the same as
Equations (120) and (121), with these new values of Ps inserted. These results are shown in Charts 73-76.

Orthogonal: Quantum Receiver-Hard Decisions

To calculate symbol error probabilities using Equation (67), it can be shown that the eigenvalues of
Equations (64) and (65) are given by

"It m (126)
Vi- l+e-Ns exp(-2,rki/M) (

Lk=1

which simplifies to

[/0 + e -N, (M_ 1)] (127)

and
v---e- i,2....M-I. (128)

We can insert these values into the formulas for symbol error probability to deduce

1 1 
,,1777432 (129)
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and also

2 (130)
P(iIk)= l+(M-1)eN' - - ,e k¢i.

Together, these give the result

p )-(I ) I+(M-)N - 1-e 2 (131)

The symbol and bit-error rates are shown in Charts 77 and 78. The formulas for semiclassical capacity
and semiclassical cutoff are the same as Equations (120) and (121), with this new value of Ps inserted. It
can be shown that the formula for cutoff reduces to

R(. = logM -logy 0 . (132)

These results are shown in Charts 79-82.

Orthogonal: Photon-Counting Soft Decisions

As in the case of OOK, we observe that, in the noiseless case, detecting one signal photon has the same
information as detecting more than one signal photon. Thus, soft-decision capacity and cutoff are the
same as for hard decisions, with the understanding that erasures are kind of a special case.

Orthogonal: Heterodyne and Homodyne Receivers-Coherent Soft Decisions

To calculate soft-decision performance, we need to find the probability density function of the group
(vector) of M measurements. We can see that the v variable of our output is a vector made up of {.vj,.v.

.Y1-1 }. Its probability density function can be written

( k) fi P/ )4 (133)
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We repeat Equation (38) here with explicit notation of the vectors:

C c = log(M )- JPYIx(Y_10)log I + p ix(y I0) d _

Inserting Equation (133) into Equation (38), we find

E] -
CC = iog(M ) - pi~ ~ o I + p c(-yk) PI(Y 0) dv ( 34

Using the density formulas in Equations (117) and (118), we can show that the term in the summation
reduces to

exp [( vk - )Y ) 2sN ,, 
(135)

where the y variables are Gaussian, the 0 th variable having the signal as mean. [See Equation ( 118).]

For M larger than 2, we resort to Monte Carlo simulations to calculate this integral. The results are shown
in Charts 83 and 84, and in Charts 87 and 88.

Cutoff rate is simpler. Repeating Equation (48) with explicit notation of the vectors,

1] (136)
R( =log(M) - log [ Bpv(y I O),p(k ,1

observing the symmetries, and using Equation (133), we can show

Rc =log(M)-log(l+(M-I)B2[ pm,p,]). (137)

For this coherent case, we find

cB [ljc,/-, ] exp(- s g. / 4) . (1 38)

These results are shown in Charts 85 and 86, and in Charts 89 and 90.
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Orthogonal: Preamplified and Heterodyne Receivers-Noncoherent Soft Decisions

For noncoherent soft-decision capacity, we follow the development of the coherent case, but use the
density functions of Equations (122) and (123). The summation term in Equation (134) then becomes [5]

I0(YkV2N ) (139)
Io ( Yo F2N, )"

and once again, we use a Monte Carlo simulation to calculate the integral. The result is shown in Charts
91 and 92.

For cutoff, we use Equation (137), where, for this noncoherent case, we can calculate

2 - (140)
B[ P,, PI exp(-N,,J/(2) 2Nexp(-r /2) /IO 4•N,, )dr

0

[which was shown in Equation (103)]. The cutoff result is shown in Charts 93 and 94.

Orthogonal: Quantum Receiver-Maximum-Likelihood Decoding

For quantum decoding, we again use the eigenvalues of the density operator, which were shown in
Equations (127) and (128). We can insert these values into the formulas for capacity and cutoff to find

CC = ologM [v(logv()+(Ml)v logv, (141)

M z

and

RQ = log(M) - log(1 +(M -1)e--'N). (142)

We can see that this is exactly 3 dB better than the semiclassical cutoff rate shown in Equation (1 32).

These results are all plotted in Charts 95-98.
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5.3 M-ARY PHASE SHIFT KEYING;-MPSK

PSK: Preliminaries

Phase shift keying uses a single pulse per symbol, but the pulse's optical phase is one of M phases,

equally spaced around the unit circle. Thus, binary PSK uses 0, n; ternary PSK uses 0, ±2r/3; 4-ary PSK

(known as QPSK) uses 0, 7r, +±t/2; and so forth. We see that P5 = Pp . We also note that the pulses need

not be constant amplitude. In fact, any pulse shape can be used to send PSK information, with peak-to-

average properties, as well as matched filter designs, having straightforward extensions.

We can note that the MPSK signal is created in two dimensions only-in-phase and quadrature of a single

carrier in a single timeslot. (2PSK uses only one dimension.) We saw that orthogonal modulations use M

dimensions. Since only two dimensions are used to send more than two bits, MPSK for M > 2 is

particularly bandwidth efficient. Thus, it is usually employed to achieve high bandwidth efficiency rather

than the highest power efficiency, although at M between 3 and 8, one can have some of both.

The MPSK receiver needs to deduce which phase was sent in each pulse. As in the previous modulations,

the best performance is usually achieved when the carrier's phase is known or deduced at the receiver

(i.e., it is coherent or quanturn optimum.) However, noncoherent techniques exist for phase modulations,
too. By measuring the difference in phase between subsequent pulses, we can deduce properties of the
phase without having an absolute coherent reference. These differential phase shift keying (DPSK)

techniques will be discussed in the photon-counting and noncoherent sections.

There is another interesting facet about PSK communication that makes its analysis and receivers

different from OOK and orthogonal. Since the possible signals are not orthogonal, it will be seen that

some errors are more likely than others. That is, even though MPSK has the symmetry property shown in

Equation (16), when a particular phase is sent, the receiver is more likely to make the error of choosing a

nearby phase than a farther away phase. Soft-decision receivers, of course, implicitly make intelligent use

of this fact by measuring the exact received phase and then requiring the decoder to make the best
maximum-likelihood use of that information.

Hard-decision receivers, for orthogonal signals, are just as likely to choose ANY incorrect signal as any

other. Thus, if a hard decision is made, the decoder for such a system performs its maximum-likelihood
calculation with no information other than the symbol decision. For MPSK, however, if a hard decision is

made, we see that we have two choices. First, the decoder can always be built like the one for orthogonal

signaling-it just takes the symbol or bit decisions and makes algebraic or other simple decisions. The

second option is to take the hard symbol decisions and then require that the decoder take into account the

structure of the signal constellation. That is, it makes a real maximum-likelihood decision on what it

knows about which symbols, if there are errors, are the most likely to have been substituted. (In reality,

this extra information requires the knowledge of the probabilities of symbols being in error, and this is a

function of the signal and noise levels. However, knowledge of these values does not require symbol-by-

symbol measurements and can be gotten by much slower and simpler AGC-type circuits. It is also likely

that a very coarse approximation can be made for these two values with very little loss in performance.)
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One really needs to weigh the costs and benefits of building each of these structures. The main reason one
builds a simple hard-decision receiver is that the technology for making voltage or other soft-decision
measurements at that symbol rate is either unavailable or perhaps just too expensive. However, even to
make a so-called M-ary hard decision, one still needs to build a circuit to compare the M voltages and
choose the largest. This may turn out to be almost as difficult as making the soft decisions in the first
place.

A decoder, too, is selected not only to be paired with the selected receiver, but also because of the
availability of its own technology. Maximum-likelihood decoders will always require more calculations
per bit than algebraic or other simpler decoders.

Selecting a receiver architecture thus requires a careful trade of all the available technologies. For
completeness, then, in this PSK section, we will present, in addition to the soft-decision receivers, both
kinds of hard-decision systems: the true hard decision receiver, in which the decoder is not required to
make use of signal constellation knowledge, and the maximum-likelihood decoder based on the hard
decisions, but which DOES make use of the signal structure. We will see that this latter option often gives
quite good performance but, as we have stated, may be an impractical option.

PSK: Photon-Counting Hard Decisions

Photon counters cannot discern the phase of the carrier, so these detectors are not applicable to direct
measurements of phase. However, there are at least two ways to turn 2PSK into pulses that can be
detected using photon counters--differentially and coherently. In Figure 8 we show an architecture for
differential photon counting of 2PSK.

3 dB 3 dB

Split Ts Split

I D e la y =- ' -

Figure 8. Photon-counting DPSK receiver.

This receiver splits the signal, sends the signals through two arms whose lengths differ by one symbol
time, and then interferes the two signals. (That is, it coherently adds and subtracts the two signals at the
output ports.) The output is seen to be the same as binary orthogonal-one arm or the other has all the
signal. Each output pulse is made up of the sum of two pulses, each at half the power. Thus, this receiver
has all the same efficiency properties as photon-counting binary orthogonal. (It does NOT have the well-
known 3-dB advantage that heterodyne or preamplified DPSK has over heterodyne or preamplified binary
orthogonal-as we will see soon-because of the power split. Also, it should be noted that this system

48



has twice the bandwidth efficiency of orthogonal because this receiver puts out one bit after every pulse,

whereas PPM, for instance, needs two time slots per bit.)

Notice that this receiver really produces the change in phases between two bits. Thus, if we want the

original bits at the receiver, we need to have performed pre-encoding at the transmitter. The required

encoder is a rate-one coder whose output is the (mod-2) sum of all the source bits transmitted so far.

Then, at the receiver, the difference between two phases turns out to be an original source bit. This

encoder is called, equivalently, a differential encoder or an accumulator.

There are at least two methods for performing coherent photon counting. The first is shown in Figure 9.

Signal
3 dB

Oscillator

Matched in

Phase and
Amplitude

Figure 9. Photon-counting 2PSK receiver-balanced LO version.

This local oscillator is very special: it not only has exactly the same optical phase as the signal, as in a

homodyne LO, but also has exactly the same amplitude. Thus, we see that all the power from both arms

goes to either one or the other output. This is another binary orthogonal system [see Equation (110)] but

this time with 3 dB more power than the DPSK version.

An even better coherent-photon-counting method was invented by Kennedy [12] as an approximation to

quantum hard decision. On a K: I splitter, with K approaching infinity, we place the signal and a very

large LO. The LO is such that, at the output where most of the signal emerges, the LO has the same

amplitude as the signal. Thus, this output is either zero or twice the input amplitude. (The waste port has

almost no signal and a very large amount of LO.) It therefore has OOK performance [Equation (76)] but

with 4 times the energy in an on pulse, which is 3 dB better than photon-counting OOK.

An interesting method of using photon counting for 4PSK was proposed by Bondurant [4]. It uses a

configuration like the Kennedy configuration. The LO starts out with the phase of any of the four possible

signals. If the selected phase turns out to be the negative of the transmitted phase, then that signal is

nulled out and no photons will be counted at the output.
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If the selected phase is one of the three other phases, then a signal appears at the output. This may or may
not lead to the counting of a photon. If a photon is counted, then we know that the phase of the LO is not
the negative of that of the true signal, and we immediately change it to be one of the other possible
phases. The idea is that we keep changing phases as we learn which signal it is NOT. Wherever we stop.
either because we are right or because we ran out of time, we announce that phase as the negative of the
actual transmitted signal.

Bondurant proposes two different rules for deciding on the subsequent phases. They have only slightly
different performance, so we will analyze only his so-called Type I receiver.

He shows, assuming Gray coding, that the probabilities of counting 0 or I or 2 or 3 photons in succession,
assuming the various true signals, are given by the formulas in Table 2. Note that the columns must sum
to I.

Table 2
Event Probabilities for the Bondurant Type I Photon-Counting Receiver for QPSK

Sw So Si11 S
0 1 e4N, 2 V,

1 0 1 - e-2N, 2(e 2N - e --4'v e 2N, _ e 4,N,

? 0 0 1 - 2e - + 2(2NS - I)e-2N, + 2e 4N,

3 0 0 0 1 -4Nse 2  -e4,

Here, we assume that the user starts with the nulling signal for Sx, followed by 511, SI, and finally SIO,

the signals walking around the circle. By symmetry, we need only analyze one starting point, S4x).
especially if each new symbol at the receiver gets a randomly chosen starting point.

For hard decisions, we assume that "no counts" is announced as S¢x, "one count" as Sý,, and so onl. From
this table, we can deduce that the probability of making a 2-bit error is

[P(0IS1 ,) + P( !IS,())] / 4 = (1/4) exp (-2N.) (143)

and the probability of choosing one bit correct and one incorrect is

[P(015S) + P(01s11 ) + P(I IS, ) + P(21S1,)] / 4 = (NA + 1/2) exp (-2N) • (144)

From these formulas, we can calculate symbol and bit-error probabilities. To calculate classical capacity
and cutoff, we have two choices. The true hard-decision analysis assumes that the decoder is given just
the symbol decision, with no information about the path it took to get there. Thus, the hard-decision
calculations of capacity and cutoff use only Equations (143) and (144). We will examine a more soft-
decision approach in a later section.
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Error-rate pertbrmances of all these (coherent) photon-counting PSK systems are shown in Charts 99 and

100. (We have also included symbol error probability for the Type II receiver, as calculated by

Bondurant.) The capacity and cutoff results are shown in Charts 101-104. (As an aside, we can note here

that the cutoff formula for photon-counting orthogonal A4 = 2 and photon-counting OOK p, = 1/2 turn out

to be exactly the same, as can be seen from the noncoherent and coherent/Kennedy cutoff curves.)

PSK: Heterodyne and Homodyne Receivers-Coherent Hard Decisions

If, in a homodyne receiver, the local oscillator has the phase of the 0 (or the I) signal of a binary PSK

input, then that receiver's output is a baseband signal corresponding to the l's and O's, which can be

baseband matched filtered. As mentioned in Section 2.2, an optical hybrid can be used to make

hornodyne-like measurements of QPSK. These are at baseband, but do not achieve the 3-dB improvement

the binary homodyne receiver sees. Finally, a heterodyne receiver uses a heterodyne front end, and then

follows it with a classical (RF-style) coherent MPSK matched-filter receiver.

It can be shown that the hard-decision error probability for homodyne 2PSK is

P1, = (D 4 ) . (145)

For coherent heterodyne, MPSK has the symbol probability

2 N(•(146)

where we let PsAI be the M-ary symbol error probability, and where Craig's function,/'- was defined in

Equation (6). It has the properties that

Ps 2 = (2N,) M = 2 (147)

Ps4 = 0-(l-Ps 2 )2  M =4 . (148)

Interestingly, the bit-error probability from Gray-coded 4PSK is the same as the bit (symbol) error

probability from 2PSK.

For the true hard-decision receiver, as discussed in the introductory PSK section, we need to analyze a

decoder that assumes only that a symbol is either correct or incorrect. Thus, the error probabilities for

each of the (M - I) incorrect symbols is assumed to be

PE = PSAI /(M -1) (149)

and the probability of the correct symbol choice is

51



Pc = 1 - PSM - (150)

Symbol error probabilities are shown in Chart 105 for heterodyne and Chart 113 for homodyne. Bit-error
probabilities are shown in Charts 106 and 114.

Using these formulas, we can also calculate the pure hard-decision coded performance. We only show
cutoff for this case because any decoding technique that could have achieved capacity would have used a
maximum-likelihood algorithm, for which the added complexity of signal structure knowledge would
certainly have been worth it. We show cutoff results for this heterodyne MPSK case in Charts 107 and 108.

To calculate capacity and cutoff for hard decisions with maximum-likelihood decoding. we need to
calculate the probabilities, not just of symbol errors, but of choosing each output symbol given each
possible input symbol. By the equal phase-spacing property, we see that we need only find the
probabilities of declaring each k • 0, given that 0 was sent. Let us number the symbols 0, 1 .... M - I as
we travel around the unit circle. That is, symbol k is declared if the phase is measured as being between

(2k-1)Tr and (2k +1);

M M

Using Craig's probability function [Equation (6)], it can be shown that the probability of choosing symbol k is

P~k I0 ±Lj2 , (2kl) -j WN(2k + 1)/T)] k M -l1 (151)P(k 10)= -- 1___ k _ -
I 2 ' M4 2

= P(M -k 10)

and, for M even, the center (M12) term is given by

M 0) ________ (M ). (152)

2 M

We first use these formulas to calculate the heterodyne bit-error probabilities by weighting each multi-bit-

error pattern with its probability. These probabilities are shown in Chart 106.

Using these probability formulas in Equations (28) and (42), we can also calculate the capacity and cutoff
curves, whose results are shown in Charts 109-112 for heterodyne and Charts 115-118 for binary
homodyne.

PSK: Preamplified and Heterodyne Receivers-Noncoherent Hard Decisions

As mentioned briefly above, the noncoherent techniques for MPSK measure differences in phase between
subsequent symbols. (Although we will not pursue them here, there are more efficient noncoherent MPSK
receivers that examine more than two symbols in a row [9, 16].) A particularly efficient architecture for
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binary systems that has found much utility in wideband systems is an optical preamplifier, followed by
the interferometer-based demodulator shown in Figure 8. As discussed earlier, such a DPSK system
requires a precoding at the transmitter with a differential encoder.

For larger M, one would need to make phase measurements in the two symbols and then deduce which

phase transition was most likely, although there are sometimes architectural tricks to simplify this
structure.

The symbol error probability of a differential MPSK receiver (sometimes called MDPSK or some other
variant) can be shown to be

-= ' 2N , ) (153)

where.fl, is Pawula's function, defined in Equation (II). This symbol error probability is plotted in Chart

119 with the related, Gray-coded bit-error probability in Chart 120.

As in the coherent case, we first calculate the trne hard-decision cutoff using this symbol error probability

along with an analog of Equations (149) and (150). These results are shown in Charts 121 and 122.

Also following the coherent case, in order to calculate capacity and cutoff for hard decisions with
maximum-likelihood decoding, we need to find specific symbol error probabilities. Exactly paralleling
the coherent case, we find that the probability of choosing symbol k when symbol 0 is correct is

P k lo) -= 7 1 S (2, k, )T(2k 1)T ] I: k ! M - 1 (154)
2 2

= P(M -k 10)

and for M even, we have

M (Mlf)(155)P(__ 0) = fp (N[N, (M T-)a' 15

2

Using these functions, we can calculate capacity and cutoff, with the results shown in Charts 123-126.

We can note here briefly that binary DPSK compares the sequences (I, 1) and (1,-1), which are seen to

be orthogonal two-bit sequences. Thus, all the performance equations (in heterodyne, homodyne, and

preamplified receivers) for binary DPSK are the same as binary orthogonal except that the DPSK decision

uses the energy from two sequential symbols. Thus, binary DPSK is exactly 3 dB better than binary

orthogonal in every metric (except the noncoherent photon-counting variant, as mentioned earlier).
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PSK: Quantum Receiver-Hard Decisions

Without performing the derivation here, it can be shown that the optimized quantum measurement
operators result in performance described by [12]

1 A-I (156)
P(JI k) = -M v exp[-jff2(j-k)i/M]

= P(j-k 10)

where

1 At -1 exp[-2N sin 2 exp[jNssin 2 (2 exp[j M (157)

k =0 )M

Note that both these formulas involve discrete Fourier transforms. Also note the explicit satisfaction of
the symmetry property in Equation (156).

Using these formulas, we can calculate the symbol probability using Equation (67). Results are shown in
Charts 127 and 128.

We reason that one who works hard enough to build a quantum optimum receiver would not settle for the
"pure" hard-decision decoder. Thus, we will only calculate the maximum-likelihood decoding
performance. Using Equation (156) in Equations (28) and (42), we can calculate semiclassical capacity
and semiclassical cutoff for quantum hard decisions (for the L = M case, as discussed earlier). Care must
be taken with the complex nature of the x.iA values defined in Equations (55) through (59).

These results are all shown in Charts 129-132.

PSK: Photon-Counting Soft Decisions

As in the cases of OOK and orthogonal, we observe that, in the noiseless binary cases, detecting one
signal photon has the same information as detecting more than one signal photon. Thus, soft-decision
capacity and cutoff are the same as for hard decisions. This applies to all the binary photon-counting
methods presented earlier.

The Bondurant photon-counting 4PSK approach, however, has a kind of soft metric that comes along
with the hard decision-namely, how many counts were counted. We would know, for example, that if
we announced "01" after one count, the answer is likely 01, but might also be I I or 10. However, it could
NOT be 00, since that hypothesis was rejected by counting the first photon. Thus, the decoder can make
use of this information.
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The symbol error probabilities were given in Table 2 earlier. Assuming that each starting phase is

randomly chosen, we can calculate classical capacity for this hard-decision-plus-ML decoding system.
The results are shown in Charts 133 and 134.

We should also note that Bondurant designed this receiver for uncoded, hard-decision use. Hence, its

performance is less good for low code rates. It is likely that a variant on his decision rule could give better

coded performance.

There is one more observation to be made here. It has been shown [2] that the likelihood function for any

photon-counting scheme is more correctly a function of the actual times of the photon arrivals. In fact, in
his Type II, Bondurant used these times to try to improve QPSK hard-decision performance. Using either
Type I or Type 1I, the exact likelihood functions for receiving 0 or I or 2 photons in succession can be
calculated, using the arrival times. We will not perform this calculation here.

PSK: Heterodyne and Homodyne Receivers-Coherent Soft Decisions

To calculate capacity and cutoff rate for coherent, soft-decision PSK, we need to find the distances

between the signal points around the unit circle. These can be found using straightforward geometry. The
results, when inserted into the formulas of Equations (38) and (48) can be shown to be

C, = iog(M ) - (158)

M-N /n(, si -J[.2irk+
Sffi (x)ff,(Y)log jexp -2 4'' vdx

• k a .- ,rrn( k .[s n ,Trk "~s , 1

and

R(. log(M ) -log I+ -'expL Ns sin-2  (159)

Since the capacity is a simple (two-dimensional) expected value, it can be calculated using either

numerical integration or Monte Carlo techniques.

These results are shown in Charts 135-138.

For homodyne 2-PSK, replace N5 by 2N 5 in these formulas. For other M, homodyne is not generally
attempted. (See the discussion in Section 2.2.)

The results for binary homodyne are shown in Charts 139-142.
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PSK: Preamplified and Heterodyne Receivers-Noncoherent Soft Decisions

To calculate the performance of noncoherent MPSK, we need to find the probability density of the
complex components of the two adjacent symbol times, but averaged over the unknown phase angle,
assumed to be uniformly distributed. This is kind of a generalization of the Rician density [Equation (7)]
and is given by

p(yjk): = exp (2N, + I )j I[2N, iY0 +Ye * /' I] (1e0)

where v is the two-dimensional complex vector of the two symbols. We can see the phase relationship
between the two symbols is 2yrk/M, which implies a differential encoding. We insert this formula in
Equation (38) to find the capacity. Similarly, we insert it into Equation (48) to find the cutoff. These
results are shown in Charts 143-146. As mentioned above, there are more efficient receivers that make
use of multiple sequential symbols [1 6]. Also as mentioned earlier, binary (noncoherent, 2-bit observation
interval) DPSK has exactly the same form as binary orthogonal, but with 3 dB better performance.

PSK: Quantum Receiver-Maximum-Likelihood Decoding

We can use the eigenvalues of Equation (157) in Equation (66) to calculate quantum capacity. We can
also use them in Equation (70) to find quantum cutoff explicitly (using Parseval's theorem to simplify the
formula)

M-, . , [-a'k7(161)
RC) = log(M) - log(l + exp[-4 N,. si, I

which is seen to be exactly 3 dB better than cutoff using homodyne soft decision. These results are shown
in Charts 147-150.
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6. DISCUSSION AND COMPARISON OF SOME MODULATION
FORMATS AND RECEIVERS

In this section, we will make explicit comparisons of some of the results we have shown in order to see

the benefits and drawbacks of employing the different methods.

First, in Charts 151 and 152, we compare the theoretical optimum coded performance for unconstrained

classical and quantum systems. At low code rates (high bandwidth, low signal power) there is a 3-dB

jump from classical cutoff to classical capacity, then another 3 dB to quantum cutoff. Quantum optimum

capacity is seen to have a very different quality in that it continues to improve as the bandwidth increases.

In Chart 153, we plot BER for symmetric OOK using all the different receiver structures we have
investigated. We can see that in uncoded systems at high signal powers where the BER is low, there is

about a 3-dB gain going from heterodyne to homodyne receivers and another 3 dB going to either photon-

counting or quantum optimum. For hard-decision coded systems, however, where we would operate at
high BER, the efficiency gains are not so clear-cut.

In Charts 154 and 155, we can see the BER for orthogonal signals with various receivers, for M = 2 and 4.

In Chart 156, we see the BER for all the receivers for 2PSK, including the several photon-counting
variants. Once again, optimum quantum hard-decision and (coherent) photon-counting variants do the

best at high signal powers.

In Chart 157, we compare many different binary coded systems. It is quite clear where the gains are.

In Charts 158-162, we compare the performance at capacity of generalized OOK for the different

receivers at various peak-to-average ratios. Interestingly, for high ratios, noiseless photon counting does

just about as well as quantum optimum hard decision. We can also see that at fairly high bandwidths (i.e.,

low FEC code rates), this family essentially achieves optimum hard-decision capacity performance.

In Charts 163-167, we compare the performance at capacity of orthogonal modulation for various

alphabet sizes, M. Here, it is interesting to see that at high M, photon counting does better than the so-

called quantum optimum hard decision. This is because the hard-decision system had been constrained to

make a decision between the M possibilities, while our photon-counting receiver was allowed an M + Ith

output, the erasure. Although we will not derive it here, an optimum [choose L > M, with the notation of

Equation (57)] symbol measurement would do better than this L = M measurement, although for high M,

it is doubtful that the optimum would be much better than the photon-counting receiver.

In Charts 168-171, we compare generalized OOK and orthogonal for several receiver types. We can see

that OOK is quite a bit better at low peak-to-average ratios (M), but that the differences become less at

high M and high bandwidth (low code rate). In general, we can see that these pulsed formats are very near
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their theoretical optimum channel capacities for many M in heterodyne (and homodyne) soft-decision and
quantum optimum systems.

In Charts 172 and 173, we compare coded performance of 2-ary and 4-ary PSK for various receivers. We
can see that there is a big gap between all the symbol-by-symbol hard-decision systems and the quantum
optimum system. The potential gain here certainly justifies investigation into code and receiver

construction for the quantum optimum.

In Chart 174, we compare optimum quantum coded performance for many of the modulation formats.

For completeness, we show in Charts 175-177 the forms of the eigenvalues of the quantum density
operators [see Equations (63) to (65)]. The eigenvalues for PSK have a quite different shape from those of

OOK and orthogonal.

We conclude with Table 3 (variants of which can be found in many references), which gathers the bit-

error rate performance formulas for all the binary formats we have presented, using each of the receivers
we have analyzed. Although it is of interest, we have seen that the more complex channel capacity
formulas are really the ones that show the performance we seek.
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Table 3
Bit-Error Rate Formulas for Binary Modulations

Modulation Format Receiver Type Bit-Error Probability Comments

OOK Photon Counting I -Only error type is by
2 missing a 'I'

Heterodyne Coherent $ (.JD -) Requires threshold

Homodyne Coherent $ ( 2N-,,) Requires threshold

Heterodyne [I + Q(OT) - Q(2-N,, T)] Requires threshold, T
Noncoherent 2 [see Equation (92)]

Quantum Optimum -(1 - I -exp (-2N,,))

1 Error from coin flip

Orthogonal Photon Counting -- exp (-Nh) E n ersr
2 when erasure

Heterodyne Coherent (D (JN,,)

Homodyne Coherent $ ( 2 N,, )

Heterodyne /2)--exp (-N!,,2
Noncoherent 2

Quantum Optimum I-(I - - exp(-2N,,

PSK Photon Counting Iexp (-N,,) Error from coin flip
Noncoherent 2 when erasure

Photon-Counting Iexp (-2N,,) Error from coin flip
Coherent Symmetric 2 when erasure

Photon Counting I Only error type is by
Coherent Kennedy 2 p missing a '1NCoeetKney2 missing a ______1 _

Heterodyne Coherent (D ( 2NN,, )

Homodyne Coherent (D ( 4-N,,)

Heterodyne I--exp (-N,,)
Noncoherent 2

Quantum Optimum - (I- I-exp (-4N,,))
2
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7. CONCLUSION

It is hoped that this collection might serve several functions:

"* Act as a single place for finding many relevant equations for many communications analyses

"* Serve as a reminder of all the design possibilities there are for the lasercom system designer

"* Act as a repository of basic references, explicit and implicit, that may serve as a jumping-off

point for the interested reader

However, the main hope of the author is that these side-by-side presentations and comparisons will

motivate the reader to invent efficient systems that can achieve the theoretical possibilities.
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